$\mathrm{C} 4-\mathrm{N} 9-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	-118.3(3)	$\mathrm{C} 2^{\prime}-\mathrm{C3}^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O}^{\prime}$	5.7
$\mathrm{C} 8-\mathrm{N} 9-\mathrm{Cl}^{\prime}-\mathrm{O4}^{\prime}$	62.9 (4)	$\mathrm{O}^{\prime}-\mathrm{C3}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C5}^{\prime}$	126.4 (3)
$\mathrm{C4}-\mathrm{N} 9-\mathrm{Cl}^{\prime}-\mathrm{C2}^{\prime}$	125.3 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	-114.0 (3)
$\mathrm{C} 8-\mathrm{N} 9-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	-53.6 (4)	$\mathrm{N} 9-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C4} 4^{\prime}$	- 160.1 (2)
$\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	38.8 (3)	$\mathrm{C} 2^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}-\mathrm{C4}^{\prime}$	-36.3 (3)
$\mathrm{N} 9-\mathrm{Cl}^{\prime}-\mathrm{C2}^{\prime}-\mathrm{C} 3^{\prime}$	158.1 (2)	$\mathrm{C5}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}$	142.2 (3)
$\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	89.8 (3)	$\mathrm{C3}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{O4}^{\prime}-\mathrm{Cl}^{\prime}$	19.2 (3)
$\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	-26.5 (3)	$\mathrm{O4}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C5}^{\prime}-\mathrm{O5}^{\prime}$	78.3

Table 2. Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \Lambda$	$D \cdots \Lambda$	$D-\mathrm{H} \cdots \Lambda$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 100$	0.86	2.04	$3.044(3)$	144
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{O}^{\prime \mathrm{i}}$	0.86	2.06	$2.891(3)$	161
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} B \cdots \mathrm{~N}^{\mathrm{ii}}$	0.82	2.01	$2.773(4)$	154
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} A \cdots \mathrm{O}^{\mathrm{iii}}$	0.82	1.90	$2.716(3)$	176
$\mathrm{O} 100-\mathrm{H} 101 \cdots \mathrm{O}^{\prime \mathrm{iv}}$	$0.86(2)$	$2.05(3)$	$2.866(3)$	$159(3)$
$\mathrm{O} 100-\mathrm{H} 102 \cdots \mathrm{O}^{\vee}$	$0.86(2)$	$1.99(2)$	$2.846(3)$	$176(4)$

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{1}{2}+x, \frac{5}{2}-y, 1-z$; (iii) $x-\frac{1}{2}$, $\frac{5}{2}-y, 1-z ;$ (iv) $\frac{1}{2}-x, 2-y, \frac{1}{2}+z ;(\mathrm{v})-x, y-\frac{1}{2}, \frac{3}{2}-z$.
With the absence of suitable anomalous scatterers within the molecule, the determination of the absolute configuration was not possible from our X-ray data. However, comparison with the configuration of the parent molecule indicates that the proposed conformation is correct.

Data collection: XSCANS (Siemens, 1996). Cell refinement: XSCANS. Data reduction: SHELXTL (Sheldrick, 1997a). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997c). Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1322). Services for accessing these data are described at the back of the journal.

References

Banerjee, A., Saenger, W., Lesyng, B., Kazimierczuk, Z. \& Shugar, D. (1978). Acta Cryst. B34, 2472-2477.

Kamiya, H. \& Kasai, H. (1997). Biochemistry, 36, 11125-11130.
Liaw, Y.-C., Chern, J.-W., Lin, G.-S. \& Wang, A. H.-J. (1992). FEBS Lett. 297, 4-8.
Robinson, H., Gao, Y.-G., Bauer, C., Roberts, C., Switzer, C. \& Wang, A. H.-J. (1998). Biochemistry, 37, 10897-10905.

Seela, F., Becher, G., Rosemeyer, H., Reuter, H., Kastner, G. \& Mikhailopulo, I. A. (1999). Helv. Chim. Acta, 82, 105-124.
Seela, F., Gabler, B. \& Kazimierczuk, Z. (1993). Collect. Czech. Chem. Commun. 58, 170-173. (Special issue.)
Seela, F., Menkhoff, S. \& Behrendt, S. ([986). J. Chem. Soc. Perkin Trans. 2, pp. 525-530.
Seela, F., Steker, H., Driller, H. \& Bindig, U. (1987). Liebigs Ann. Chem. pp. 15-19.
Seela, F. \& Wei, C. (1997a). Helv. Chim. Acta, 80, 73-85.
Seela, F. \& Wei, C. (1997b). Chem. Commun. pp. 1869-1870.
Seela, F. \& Wei, C. (1999). Helv. Chim. Acta, 82, 726-745.
Seela, F., Wei, C. \& Kazimierczuk, Z. (1995). Helv. Chim. Acta, 78, 1843-1854.
Seela, F., Wei, C. \& Melenewski, A. (1996). Nucleic Acids Res. 24, 4940-4945.
Sepiol, J., Kazimierczuk, Z. \& Shugar, D. (1976). Z. Naturforsch. Teil C, 31, pp. 361-370.
Sheldrick, G. M. (1997a). SHELXTL. Release 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997c). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
© 1999 International Union of Crystallography
Printed in Great Britain - all rights reserved

Siemens (1996). XSCANS User's Manual. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Subramanian, E. \& Marsh, R. E. (1971). Acta Cryst. B27, 753-759.
Sugiyama, H., Ikeda, S. \& Saito, I. (1996). J. Am. Chem. Soc. 118, 9994-9995.
Wong, R. Y. \& Nachman, R. J. (1984). Acta Cryst. C40, 1409-1451.
Yang, X.-L., Sugiyama, H., Ikeda, S., Saito, I. \& Wang, A. H.-J. (1998). Biophys. J. 75, 1163-1171.

Acta Cryst. (1999). C55, 1337-1339

5,7-Diphenyl[1,2,4]triazolo[1,5-a]pyrimidine at 122 K

Andrzej Surdykowski, ${ }^{a}$ Edward SzıyK ${ }^{a}$ and Sine LARSEN b
${ }^{a}$ Department of Chemistry, Nicholas Copernicus University, Gagarina 7, 87-100 Toruń, Poland, and ${ }^{\text {b }}$ Centre for Crystallographic Studies, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.E-mail: sine@xray.ki.ku.dk
(Received 17 September 1998; accepted 29 March 1999)

Abstract

The title compound, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4}$, belongs to a group of N -bridgehead purine analogue ligands. The nine atoms comprising the triazolopyrimidine core have an r.m.s. deviation of $0.023 \AA$ from the mean plane. The two phenyl groups attached to the core form interplanar angles of $27.38(6)$ and $55.76(3)^{\circ}$ with this core plane.

Comment

Many derivatives of bicyclic [a]-heteroannulated pyrimidine are known as compounds of interesting coordinating properties for metal ions. Crystal structures have been reported for several metal complexes with ligands of this type (Biagini Cingi et al., 1987, 1983; Haasnoot et al., 1984). Therefore it is surprising that the structures of the free ligands have not been described in the literature (Cambridge Structural Database; Allen et al., 1983). In order to enable the comparison between a free and a coordinated ligand, we undertook the structure determination of 5,7-diphenyl[$1,2,4]$ triazolo[1,5- a]pyrimidine, subsequently referred to as dptp.

dptp

The ORTEPII (Johnson, 1996) drawing in Fig. 1 illustrates the overall geometry of dptp as found in the crystal. The nine atoms comprising the triazolopyrimidine core have an r.m.s. deviation of $0.023 \AA$ from the least-squares plane defined by these atoms. This ring system is not strictly planar but slightly bent along the N8-C3A bond as indicated by the interplanar angle of $3.13(9)^{\circ}$ between the planes calculated for six atoms of the pyrimidine ring and the atoms of the triazole moiety. Fusion of the triazole with the pyrimidine ring decreases the aromaticity of the latter as shown by the elongation of $\mathrm{C} 6-\mathrm{C} 5[1.427$ (2) \AA] and N $8-\mathrm{C} 3 A$ [1.380 (2) \AA] bonds compared to ~ 1.377 and $\sim 1.330 \AA$, respectively, for non-conjugated, aryl-substituted pyrimidine compounds (Sawitzki \& Schnering, 1979). The other bond lengths are almost unaffected. This is in line with previous observations for the pyridazine ring in which the aromaticity decreased when it was connected to a triazole ring system (Boulanger et al., 1988).

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids enclose 50% probability, the H atoms are drawn as spheres with a fixed radius.

Coordination compounds of $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ with dptp have been investigated and the structures are also known for complexes of the related ligand, where the phenyl rings are replaced with methyl. In all the known structures where these ligands are monodentate, the ligating N atom is N 3 . The bond lengths in dptp when it functions as a ligand towards $\mathrm{Co}^{\text {II }}$ and $\mathrm{Zn}^{1 I}$ are almost identical to those observed in the present structure (Szłyk et al., 1997). The only significant changes of the geometry of dptp in these complexes are a relative
shortening of the $\mathrm{N} 1-\mathrm{C} 2$ and $\mathrm{N} 4-\mathrm{C} 3 A$ bonds and a lengthening of the $\mathrm{N} 3-\mathrm{C} 2$ bond. Some significant differences between free and coordinated dptp are found with respect to the relative orientations of the two phenyl groups. The phenyl ring attached to C5 is almost coplanar to the central core when dptp is ligating to $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ with interplanar angles 5.5 and 5.8°, respectively; in the free ligand this angle is $27.38(6)^{\circ}$. The orientation of the other phenyl group is more similar in free and coordinated dptp. In the present structure, the angle between the least-squares planes calculated for the C71-C76 ring and the central nine-atom core is $55.76(3)^{\circ}$, not too different from the equivalent angles in the Zn^{11} and Co^{11} complexes: 52.9 and 48.0°, respectively. This orientation of the C7 group effectively minimises the interactions between the ortho-H atoms and the central core. Therefore it was not expected that $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds could be observed in this structure. However, we find that the H atoms attached to C2, C75, and C76 are all engaged in intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds with $\mathrm{C} \cdots \mathrm{N}$ distances in the range 3.283 (2)- 3.459 (2) \AA. The H atoms from C 75 and C 76 are interacting with $\mathrm{N} 3(x, 1+y, z)$ and $\mathrm{N} 1\left(\frac{1}{2}+x\right.$, $\frac{1}{2}-y, z$), respectively, through linear hydrogen bonds, where H2 takes part in a bifurcated or three centre hydrogen bonds to N3 and N4 from another molecule related by a twofold screw axis parallel to the a axis. That N3 serves as an acceptor for two hydrogen bonds is in line with the observation that it is the ligating atom in the investigated coordination compounds.
To elucidate this aspect further, semiempirical and $a b$ initio calculations were performed for the nineatom central core. The ligand conformation was refined by force-field calculation using the $m m 2$ force field and subsequently used for Zindo-S and $a b$ initio (321G) computations by use of the program HyperChem (Hypercube, 1997). Both types of computations verified that the atomic charge and the electrostatic potential have their largest negative values associated with N3.

Experimental

Synthesis was carried out as described previously (Grodzicki et al., 1996) and recrystallized from ethanol-acetone (1:1).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \\
& M_{r}=272.31 \\
& \text { Orthorhombic } \\
& P 2_{1} 2_{1} 2_{1} \\
& a=7.8427(12) \AA \\
& b=10.2644(13) \AA \\
& c=16.961(2) \AA \\
& V=1365.4(3) \AA^{3} \\
& Z=4 \\
& D_{x}=1.325 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured }
\end{aligned}
$$

> Cu $K \alpha$ radiation
> $\lambda=1.54184 \AA$
> Cell parameters from 20 \quad reflections $\theta=39-47^{\circ}$
> $\mu=0.653 \mathrm{~mm}^{-1}$
> $T=122(2) \mathrm{K}$
> Elongated prism
> $0.50 \times 0.20 \times 0.15 \mathrm{~mm}$
> Colourless

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.029$
\quad diffractometer	$\theta_{\max }=74.92^{\circ}$
$\omega-2 \theta$ scans	$h=0 \rightarrow 9$
Absorption correction: none	$k=0 \rightarrow 12$
2931 measured reflections	$l=-21 \rightarrow 21$
2630 independent reflections	6 standard reflections
2586 reflections with	frequency: 166.7 min
$\quad I>2 \sigma(I)$	intensity decay: none

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031\)
\(w R\left(F^{2}\right)=0.081\)
\(S=1.020\)
2630 reflections
239 parameters
H atoms treated by a
    mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0548 P)^{2}\right.\)
        \(+0.2478 P]\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
Refinement on \(F^{2}\)
\(w R\left(F^{2}\right)=0.081\)
\(S=1.020\)
2630 reflections
239 parameters
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0548 P)^{2}\right.\) \(+0.2478 P\) ]
where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
```

$(\Delta / \sigma)_{\text {max }}=0.034$
$\Delta \rho_{\text {max }}=0.162 \mathrm{e}^{-3}$
$(\Delta / \sigma)_{\text {max }}=0.034$
$\Delta \rho_{\text {max }}=0.162 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.153 \mathrm{e} \AA^{-3}$
Extinction correction:
SHELXL93 (Sheldrick,
1993)
Extinction coefficient:
0.0084 (6)
Scattering factors from
International Tables for
Crystallography (Vol. C)
$R_{\text {int }}=0.029$
diffractometer
$\theta_{\text {max }}=74.92^{\circ}$
$\omega-2 \theta$ scans
$h=0 \rightarrow 9$
Absorption correction: none
$k=0 \rightarrow 12$
2931 measured reflections
$l=-21 \rightarrow 21$
2630 independent reflections
6 standard reflections
2586 reflections with
$I>2 \sigma(I)$
intensity decay: none

Table 1. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 2$	$1.3325(16)$	$\mathrm{N} 8-\mathrm{C} 3 A$	$1.3796(15)$
$\mathrm{N} 1-\mathrm{N} 8$	$1.362(15)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.3698(18)$
$\mathrm{N} 4-\mathrm{C} 5$	$1.3272(16)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.4273(17)$
$\mathrm{N} 4-\mathrm{C} 3 A$	$1.342(17)$	$\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}$	$1.3346(16)$
$\mathrm{N} 8-\mathrm{C} 7$	$1.3719(15)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.3523(18)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 8$	$101.09(10)$	$\mathrm{N} 3-\mathrm{C} 3 A-\mathrm{N} 4$	$127.95(11)$
$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 3 \mathrm{~A}$	$116.39(11)$	$\mathrm{N} 3-\mathrm{C} 3 A-\mathrm{N} 8$	$109.24(11)$
$\mathrm{N} 1-\mathrm{N} 8-\mathrm{C} 7$	$127.37(10)$	$\mathrm{N} 4-\mathrm{C} 3 A-\mathrm{N} 8$	$122.78(1)$
$\mathrm{N} 1-\mathrm{N} 8-\mathrm{C} 3 \mathrm{~A}$	$110.18(9)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.65(11)$
$\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 3 A$	$122.36(10)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 8$	$115.18(11)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.0(11)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$117.03(12)$
$\mathrm{C} 3 A-\mathrm{N} 3-\mathrm{C} 2$	$102.45(10)$		

Only reflections which had $F^{2} \geq 3 \sigma\left(F^{2}\right)$ were used in the refinement. The refinement included both positional and isotropic displacement parameters for the H atoms; the C H range $=0.96(2)-1.02(2) \AA$. The value of the Flack (1983) parameter [$-0.2(3)$; 996 Friedel-related reflections] was unreliable.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992). Cell refinement: CAD-4 EXPRESS. Data reduction: DREADD (Blessing, 1987). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976).

We thank Mr Flemming Hansen for help with the crystallographic experiment.

[^0]
References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.

Biagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A., Cornelissen, J. P., Haasnoot, J. G. \& Reedijk, J. (1987). Inorg. Chim. Acta, 129, 217-222.
Biagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A., Haasnoot, J. G. \& Reedijk, J. (1983). Inorg. Chim. Acta, 72, 81-88.

Blessing, R. H. (1987). Cryst. Rev. 1, 3-58.
Boulanger, T., Ledent, L., Vercauteren, D. P., Norberg, B., Evrard, G. \& Durant, F. (1988). Acta Cryst. C44, 1759-1762.
Enraf-Nonius (1992). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Grodzicki, A., Szłyk, E., Pazderski, L., Goliński, A. \& Haasnoot, J. G. (1996). Magn. Reson. Chem. 34, 725-726.

Haasnoot, J. G., Driessen, W. L. \& Reedijk, J. (1984). Inorg. Chem. 23, 2803-2807.
Hypercube (1997). HyperChem. Hypercube Inc., 419 Phillip Street, Waterloo, Ontario, Canada N2L 3X2.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sawitzki, G. \& Schnering, H. G. (1979). Chem. Ber. 112, 3104-3109.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Szłyk, E., Wojtczak, A., Jaskólski, M., Gilski, M., Haasnoot, J. G. \& Reedijk, J. (1997). Inorg. Chim. Acta, 260, 145-150.

Acta Cryst. (1999). C55, 1339-1342

Dichloro[(E)-2-chloro-1-(2-hydroxyprop-2-yl)vinyl](4-methoxyphenyl)tellurium(IV)

J. Zukerman-Schpector, ${ }^{a, b *}$ Robinson L. Camillo, ${ }^{a}$ João V. Comasseto, ${ }^{b}$ Rodrigo L. O. R. Cunha, ${ }^{b}$ André Chieffi, ${ }^{b}$ Gllson Zenl ${ }^{b}$ and I. Caracelli ${ }^{a}$
${ }^{a}$ Laboratório de Cristalografia, Estereodinâmica e
Modelagem Molecular, Departamento de Química,
Universidade Federal de São Carlos, Caixa Postal 676, 13565-905 São Carlos SP, Brazil, and ${ }^{\text {b }}$ Instituto de QuímicaUniversidade de São Paulo, São Paulo, Brazil. E-mail: julio@power.ufscar.br
(Received II November 1998; accepted 31 March 1999)

Abstract

The geometry around the $\mathrm{Te}^{\mathrm{iV}}$ atom in the title compound, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{Te}$ or $\left[\mathrm{TeCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{ClO}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right)\right]$, is pseudo-trigonal bipyramidal, with the Cl atoms in the apical positions and the Te lone pair occupying the fifth position in the equatorial plane. By including the intermolecular secondary $\mathrm{Te} \cdots \mathrm{Cl}$ contact [3.485(1) Å] trans to the $\mathrm{Te}-\mathrm{C}_{\text {vinyl }}$ bond, the structure may be regarded as pseudo-octahedral. The molecules are associated via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond to form centrosymmetric dimeric units, which in turn are arranged in an infinite zigzag chain along the b axis through the secondary $\mathrm{Te} \cdots \mathrm{Cl}$ bond. Distances and angles are: $\mathrm{Te}-\mathrm{Cl} 2.4820$ (8) and 2.5600 (8), $\mathrm{Te}-\mathrm{C}$

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1048). Services for accessing these data are described at the back of the journal.

